
MyDataShare OpenID Connect Integration
Specification
Background
The purpose of this document is to describe the technical details of integrating a Relying Party application with the MyDataShare using
OpenID Connect protocol.

OpenID Connect Identity Provider Metadata
OpenID Connect compliant access management Identity Provider metadata can be fetched from following URL:
https://gluu.alpha.mydatashare.com/.well-known/openid-configuration

Integrating applications can use the metadata to get information about the OpenID Connect interfaces and configuration parameters
supported by MyDataShare (e.g. token endpoint, authorization endpoint) and about the claims that are supported.

Pre-requisites
Using MyDataShare OpenID Connect endpoints requires the Relying Parties to be registered. Relying Party registration must be asked
separately from MyDataShare and it will be done manually through the administration console.

Information Needed from Relying Parties
In order to manually register an application, following information is needed:

URLs where browser can be redirected after successful authentication (HTTPS URLs or mobile application custom scheme URLs)
URLs where browser can be redirected after successful logout (HTTPS URLs or mobile application custom scheme URLs)
Name of the application
Contact email address(es)
Integration type: Authorization Code, Client Credentials Grant, Refresh Token Grant. Implicit grant type is deprecated.
Scopes that need to be available (openid by default). Available scopes are listed below in section "Supported Scope Values"
ID token signing algorithm (RS256 by default)
Token endpoint authentication method (client_secret_basic by default). Available authentication methods are listed in OpenID
Connect Core specification.)
Subject Identifier Type (pairwise or public , pairwise by default)

Information Supplied to Relying Parties
After registration the integrating application will get following information:

Client ID: Unique identifier of the application
Client Secret: Secret generated for the application

Supported Scope Values
Following table describes the scopes that are supported by MyDataShare:

Scope Description

openid Basic scope defined in the OpenID Connect Core specification.

profile OpenID Connect Core compliant scope to fetch basic profile attributes of the authenticated user.

admin Provides administrator access to MOP APIs.

organization Provides organization-level access to MOP APIs.

wallet Provides access to MOP Wallet APIs.

extended_introspection Determines whether access token introspection returns additional claims. Only usable for MOP.

http://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
http://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims

Supported ACR Values
Following table contains the list of supported authentication methods that are currently available:

acr_valuesacr_values preselectedExternalProviderpreselectedExternalProvider
Authentication

Assurance
Level

Description

passport_social ewogICAicHJvdmlkZXIiIDogIm9wZW5pZGNvbm5lY3QiCn0 2
Strong user authentication
with Signicat remote ID
broker.

passport_social ewogICAicHJvdmlkZXIiIDogInNpc3VpZCIKfQ
0, 1 or 2
(readable from
loa claim)

Mobile authentication with
SisuID.

Integrating relying party can request specific authentication method with combination of acr_values and
preselectedExternalProvider request parameters when calling the MyDataShare authorization endpoint.

Supported UI Locales
Following table contains the list of supported UI locales:

Key Value

en English

Supported Claims
Common Claims
ID token payload is a key-value type of JSON data structure. Individual key-value pairs are called claims in the JWT terminology. ID Token
contains a set of common claims. These are defined in the ID Token specification. Below table lists these claims:

http://openid.net/specs/openid-connect-core-1_0.html#IDToken

Claim Scope Mandatory Description Example Value

iss openid Yes

Identifier of the creator
of the ID token. This is
populated with the
URL of access
management.

https://gluu.beta.mydatashare.com

aud openid Yes

Relying Party for
whom the ID token is
generated. Client ID of
the Relying Party is
populated here.

@!596F.C4DF.5333.39D2!0001!4440.D05E!0008!04EA.2671

exp openid Yes Session expiration
timestamp.

1464078639

iat openid Yes ID Token creation
timestamp.

1464075039

auth_time openid No Authentication
timestamp.

1464075039

nonce openid No

Value that the Relying
Party sent to the
Identity Provider when
calling the
authorization
endpoint.

2310aa8f-6333-47bc-bfa2-54c847517396

acr openid No

Authentication method
that was used to
authenticate the end-
user.

passport_social

at_hash openid No

Hash of the access
token associated to
the ID token.
Generation of this
value is described in
the OpenID Connect
specification.

sXG8ntmpPQj8KMdOvb_lmU38DpH0uDxx8txv8X8KHMo

sub openid Yes

Persistent unique
identifier of the
authenticated user.

If subject identifier
type for the client is
public , the value is
the same for all
clients. If the subject
identifier type is
pairwise , the value
will be client specific.

@!2027.861B.4505.5885!0001!200B.B5FE!0000!08AC.7BE7

MyDataShare Specific Claims
Following table lists the claims that are supported in the OpenID Connect compliant UserInfo endpoint and are also populated to the ID
token when the associated scope is in place and client is configured to receive the claims in ID Token:

http://openid.net/specs/openid-connect-core-1_0.html#CodeIDToken

Claim Scope Mandatory Description Example Value

name profile No Full name. Test Tester

given_name profile No First names. Test

family_name profile No Last name. Tester

govID profile No Government
Unique Identifier. 010101-0101

inum profile Yes Gluu persistent
unique identifier

@!2027.861B.4505.5885!0001!200B.B5FE!0000!08AC.7BE7

updated_at profile Yes Last update
timestamp

1590665332693

For users who have authenticated with sisuid and low authentication level, the claims are populated in following way: * name contains
the mobile phone number * given_name , family_name , and govID are not populated

For users who have authenticated with sisuid and strong authentication level, or with signicat , the claims are populated in following
way: * name contains the full name of the user * given_name contains the first names of the user * family_name contains the last
name of the user * govID contains the government unique identifier of the user

Using Authorization Code Grant Flow
Web applications that can keep the client_secret secure (i.e. have a backend) can use the OpenID Connect compliant Authorization Code
Grant Flow. Additionally client applications (native mobile applications or Javascript based single-page applications) that cannot keep the
client secret secure, can use the Authorization Code Grant Flow with PKCE extension.

Authorization code grant flow is initiated with a call that the Relying Party does to the Identity Provider authorization endpoint:

https://<domain>/oxauth/restv1/authorize?
response_type=code&client_id=@!2027.861B.4505.5885!0001!200B.B5FE!0008!84D4.82F3&redirect_uri=https://sec-
221.nixu.fi/redirect&scope=openid profile&state=93118d46-e50c-4682-956d-51370c7970f2&nonce=f2f4a9cd-cdc0-4a84-ac33-
d9810a961f0b&acr_values=passport_social&preselectedExternalProvider=ewogICAicHJvdmlkZXIiIDogInNpc3VpZCIKfQ

Following table describes the parameters that need to be provided in the call:

Parameter Mandatory Description Example Value

response_type Yes

Authorization
flow to be
used. Must be
populated with
value code .

code

client_id Yes

Unique
identifier of the
registered
Relying Party.

@!2027.861B.4505.5885!0001!200B.B5FE!0008!84D4.82F

redirect_uri Yes

URL where the
browser is
redirected after
successful
authentication
and
authorization.
This must be
one of the
redirect_uri

https://sec-221.nixu.fi/redirect

http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://tools.ietf.org/html/rfc7636

values
registered for
the Relying
Party.

scope Yes

Space
separated list
of scopes that
will be
associated to
the created
access token.
List of
supported
scopes is
provided
above.

openid profile

state Yes

Random value
used in CSRF
protection.
Relying Party
must store the
value to
session or to
cookie when
initiating the
call to
authorization
endpoint. The
Relying Party
must also
validate that
the value of the
state
parameter has
not changed
when the
Identity
Provider
redirects back
to Relying
Party. The
specification
says that this
parameter is
not mandatory,
but using this
parameter is
recommended
strongly.

93118d46-e50c-4682-956d-51370c7970f2

Random value
that will be
populated in
the generated
ID token. Used
for protection

nonce Yes
against replay
attacks. The
specification
says that the
parameter is
not mandatory,
but using this
parameter is
recommended
strongly.

f2f4a9cd-cdc0-4a84-ac33-d9810a961f0b

ui_locales No
UI locale to be
used. Default
value is en .

en

acr_values Yes

Authentication
method to be
used.
Supported
values are
provided
above.

passport_social

preselectedExternalProvider Yes

External
Identity
Provider to be
used.
Supported
values are
provided
above.

ewogICAicHJvdmlkZXIiIDogInNpc3VpZCIKfQ

After sending the request to authorization endpoint, access management checks for the presence of an existing single sign-on session. If
no valid session exists, the user must authenticate.

After successful authentication and authorization, user's browser is redirected back to redirect_uri set by the Relying Party:

https://sec-221.nixu.fi/redirect?state=93118d46-e50c-4682-956d-51370c7970f2&code=831daff2-9353-438e-9aaf-
afe97518b2e0

Following table describes the parameters that are populated in the redirect_uri :

Parameter Mandatory Description Example Value

state Yes
If the Relying Party populated the state parameter when calling the
authorization endpoint, the same value is provided here when redirecting back
to the Relying Party.

93118d46-e50c-
4682-956d-
51370c7970f2

code Yes Authorization Code that the Relying Party can exchange into a valid access
token by calling the token endpoint.

831daff2-9353-
438e-9aaf-
afe97518b2e0

After receiving the authorization, the Relying Party will exchange the authorization into a valid access token that it can use to make calls
to resource servers. Below is an example request to resolve the access token through the token endpoint:

POST /oxauth/restv1/token
Host: <domain>
Accept: application/json
Authorization: Basic ********
Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&redirect_uri=https://sec-221.nixu.fi/redirect&code=831daff2-9353-438e-9aaf-
afe97518b2e0

Following table describes the parameters that need to beprovided when calling the token endpoint:

Parameter Mandatory Description Example Value

grant_type Yes Identifier of the authentication method. This must be populated
with value authorization_code . authorization_code

redirect_uri Yes redirect_uri where browser was redirected. https://sec-
221.nixu.fi/redirect

code Yes Authorization code that the Relying Party received.
831daff2-9353-438e-
9aaf-afe97518b2e0

In order to call the token endpoint the Relying Party must authenticate itself. The default authentication method is used for this purpose is
HTTP-Basic. The username is the client_id of the Relying Party and the password is the client_secret . Other authentication
methods listed in the OpenID Connect specification may also be used as defined in the OpenID Connect Core specification.

Access management validates the call to the token endpoint in following way: * Authorization code is mandatory and it must be present
in access management side * Redirect URI is mandatory and the value must match the URL which was requested when calling the
authorization endpoint * Grant Type is mandatory and it must have value authorization_code * Client ID used in application
authentication must be the same that was used when calling the authorization endpoint

If request validation fails, access management will respond with HTTP status code 400 or 401 as defined in the OAuth 2.0 specification.
HTTP response body contains additional information about the error in JSON format.

If the request to token endpoint is successful, access management will respond with HTTP status code 200 and following kind of
response:

HTTP/1.1 200 OK
Date: Wed, 25 May 2016 10:12:38 GMT
Content-Length: 1145
Content-Type: application/json

{"access_token":"7f648110-505d-4960-868a-
3dfdf0599cad","token_type":"bearer","expires_in":14399,"refresh_token":"a63a3f0e-7222-49d8-bdd3-
146ba0cb12f6","scope":"openid profile","id_token":"..."}

Following table contains the parameters returned by token endpoint:

http://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication
https://tools.ietf.org/html/rfc6749#section-5.2

Parameter Mandatory Description Example Value

access_token Yes Access token that can be used to make calls to resource servers.
7f648110-505d-
4960-868a-
3dfdf0599cad

token_type Yes
Access token type. This will always have value bearer which means
that access tokens following the guidelines from RFC 6750.

bearer

expires_in Yes Access token lifetime in seconds. 14399

refresh_token No
Refresh token, which is a one-time usable token that can be exchanged
into a valid access token. Refresh token usage is described in separate
chapter.

a63a3f0e-7222-
49d8-bdd3-
146ba0cb12f6

scope No Scope associated to the access_token . openid profile

id_token No ID Token which is a JSON Web Token containing information about the
authentication session and about the authenticated identity.

See OpenID
Connect Core
specification.

Using Implicit Grant Flow
Usage of implicit grant flow has been deprecated in favor of authorization code grant flow with PKCE extension. This is the
recommended integration method for client applications that are not capable of keeping their client_secret secure, such as
Javascript MVC web applications and native mobile applications.

Using Client Credentials Grant Flow
Backend applications that require application authentication, but do not require end-user authentication, may use the OAuth 2.0
compliant client credentials grant flow.

Client credentials grant flow usage needs to be separately requested when registering the Relying Party.

When using client credentials grant flow, the Relying Party makes following request to the token endpoint:

POST /oxauth/restv1/token
Host: <domain>
Accept: application/json
Authorization: Basic ********
Content-Type: application/x-www-form-urlencoded

grant_type=client_credentials&scope=openid profile

Following table contains the parameters that need to be provided in the call:

Parameter Mandatory Description Example Value

grant_type Yes Authorization flow to be used. Must be populated with value
client_credentials . client_credentials

scope No Space separated list of scopes that will be associated to the created
access token. List of supported scopes is provided above.

openid profile

In order to call the token endpoint the Relying Party must authenticate itself. The default authentication method is used for this purpose is
HTTP-Basic. The username is the client_id of the Relying Party and the password is the client_secret . Other authentication
methods listed in the OpenID Connect specification may also be used as defined in the OpenID Connect Core specification.

Access management validates the call to the token endpoint in following way: * Grant Type is mandatory and it must have value
client_credentials * Relying Party authentication information must be available in the Authorization HTTP header and must
match the values configured for the Relying Party

If request validation fails, access management will respond with HTTP status code 400 or 401 as defined in the OAuth 2.0 specification.

https://tools.ietf.org/html/rfc6750
https://openid.net/specs/openid-connect-core-1_0.html#IDToken
http://openid.net/specs/openid-connect-core-1_0.html#ImplicitFlowAuth
http://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc6749#section-4.4
http://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication
https://tools.ietf.org/html/rfc6749#section-5.2

HTTP response body contains additional information about the error in JSON format.

If the request to token endpoint is successful, access management will respond with HTTP status code 200 and following kind of
response:

HTTP/1.1 200 OK
Date: Thu, 26 May 2016 06:17:33 GMT
Content-Length: 600
Content-Type: application/json

{"access_token":"7f648110-505d-4960-868a-3dfdf0599cad","token_type":"bearer","expires_in":299,"scope":"openid
profile"}

Following table contains the parameters returned by token endpoint:

Parameter Mandatory Description Example Value

access_token Yes Access token that can be used to make calls to resource servers.
7f648110-505d-4960-
868a-3dfdf0599cad

token_type Yes
Access token type. This will always have value bearer which means
that access tokens following the guidelines from RFC 6750.

bearer

expires_in Yes Access token lifetime in seconds. 299

scope No Scope associated to the access_token . openid profile

The response will contain no refresh_token or id_token . If the Relying Party needs a new access token, it must perform the call to
token endpoint again.

Refresh Token Usage
Applications using authorization code grant will receive a refresh token as a response to the call to the token endpoint. This can be used
to offer persistent access to API interfaces on behalf of the user, because when the access token expires, the refresh token can be used
to generate a new access token. Refresh token usage is described in detail in OAuth 2.0 specification.

Relying Parties can use refresh tokens by making a call to the token endpoint in following way:

POST /oxauth/restv1/token
Host: <domain>
Accept: application/json
Authorization: Basic ********
Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&scope=openid profile&refresh_token=c033515f-eac6-4a4f-a6cd-d158896b216a

Following table contains the parameters that need to be provided in the call:

Parameter Mandatory Description Example Value

grant_type Yes Authorization flow to be used. Must be populated with value
refresh_token . refresh_token

scope No Space separated list of scopes that will be associated to the created
access token. List of supported scopes is provided above.

openid profile

refresh_token Yes Refresh token.
c033515f-eac6-4a4f-
a6cd-d158896b216a

In order to call the token endpoint the Relying Party must authenticate itself. The default authentication method is used for this purpose is
HTTP-Basic. The username is the client_id of the Relying Party and the password is the client_secret . Other authentication

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6749#section-6

methods listed in the OpenID Connect specification may also be used as defined in the OpenID Connect Core specification.

Access management validates the call to the token endpoint in following way:

Refresh token is mandatory and it must be present in access management side
Grant Type is mandatory and it must have value refresh_token
Relying Party authentication information must be available in the Authorization HTTP header and must match the values
configured for the Relying Party
Client ID used in application authentication must be the same as the one that is tied to the refresh token

If request validation fails, access management will respond with HTTP status code 400 or 401 as defined in the OAuth 2.0 specification.
HTTP response body contains additional information about the error in JSON format.

If the request to token endpoint is successful, access management will respond with HTTP status code 200 and following kind of
response:

HTTP/1.1 200 OK
Date: Wed, 25 May 2016 10:12:38 GMT
Content-Length: 1145
Content-Type: application/json

{"access_token":"7f648110-505d-4960-868a-
3dfdf0599cad","token_type":"bearer","expires_in":299,"refresh_token":"fb6446a3-d944-434b-9a51-
18144303ff29","id_token":"...","scope":"openid profile"}

Following table contains the parameters returned by token endpoint:

Parameter Mandatory Description Example Value

access_token Yes Access token that can be used to make calls to resource servers.
7f648110-505d-
4960-868a-
3dfdf0599cad

token_type Yes
Access token type. This will always have value bearer which means
that access tokens following the guidelines from RFC 6750.

bearer

expires_in Yes Access token lifetime in seconds. 14399

refresh_token No
Refresh token, which is a one-time usable token that can be exchanged
into a valid access token. Refresh token usage is described in separate
chapter.

fb6446a3-d944-
434b-9a51-
18144303ff29

scope No Scope associated to the access_token . openid profile

id_token No ID Token which is a JSON Web Token containing information about the
authentication session and about the authenticated identity.

See OpenID
Connect Core
specification.

ID Token Validation
The ID Token returned by access management is a JSON Web Token which is defined in the OpenID Connect Core Specification and in
RFC 7519.

When the Relying Party receives an ID Token from the Identity Provider, it must validate the ID Token based on following rules:

iss claim must match the URL of the identity provider
aud claim must contain the Relying Party client_id
ID Token signature must be verified as defined in RFC 7515. Public keys to verify the signature can be requested from JWKS
endpoint
exp claim must be checked so that the ID Token has not expired
iat claim must be check so that not too long has passed since the ID Token creation
auth_time claim may be checked to determine how long it has passed since the user has last authenticated

http://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication
https://tools.ietf.org/html/rfc6749#section-5.2
https://tools.ietf.org/html/rfc6750
https://openid.net/specs/openid-connect-core-1_0.html#IDToken
http://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7515

acr claim may be checked to verify that the authentication was done with a trusted authentication method.

Requesting User Information through UserInfo Endpoint
After successful authentication and authorization and receiving a valid access_token, the Relying Party can request the information of the
authenticated user through the OpenID Connect compliant UserInfo endpoint.

The claims supported by the Userinfo endpoint are listed above in "Supported Claims".

Below is an example request to the UserInfo endpoint:

GET /oxauth/restv1/userinfo
Host: <domain>
Accept: application/json
Authorization: Bearer ...

Below is an example response from the UserInfo endpoint:

{"sub":"0035-eda95a7a5eafa07c849dc65fc0ea93c6-
fbb81765","inum":"@!2027.861B.4505.5885!0001!200B.B5FE!0000!08AC.7BE7","name":"Test
Tester","family_name":"Tester","given_name":"Test"}

Logout
Relying parties can logout an end-user by using the OpenID Connect compliant RP initiated logout endpoint.

Following is an example URL to perform the logout:

https://<domain>/oxauth/restv1/end_session?post_logout_redirect_uri=https://sec-221.nixu.fi/test&id_token_hint=...

Following table contains the parameters that need to be provided in the call:

Parameter Mandatory Description Example Value

post_logout_redirect_uri Yes
URL where the browser is redirected after successful
logout. URL must be one of the valus configured for the
Relying Party.

https://sec-
221.nixu.fi/test

id_token_hint Yes ID Token assigned to the user being logged out. Described above.

Access Token Validation in Resource Server
When receiving an access token sent by the Relying Party, the resource servers can validate the access token by calling the RFC 7662
compliant introspection endpoint.

Authorization header must contain a valid access token. Clients requiring additional claims to be incorporated in the introspection
response must provide an access token with extended_introspection scope.

Below is an example request to the token introspection endpoint:

POST /oxauth/restv1/introspection
Host: <domain>
Accept: application/json
Authorization: Bearer eda34...
token=eda34........

Below is an example response from the introspection endpoint without extended_introspection scope:

http://openid.net/specs/openid-connect-core-1_0.html#UserInfo
http://openid.net/specs/openid-connect-session-1_0.html#RPLogout
https://tools.ietf.org/html/rfc7662

{"active":true,"scopes":
["openid"],"client_id":"@!4475.51D1.A110.13CE!0001!A2B0.0497!0008!C46C.0D3D.60B9.A4B7","username":"Test
User","token_type":"bearer","exp":1591686571,"iat":1591600171,"sub":"@!4475.51D1.A110.13CE!0001!A2B0.0497!0000!2600.
9F11.7B4E.966B","aud":"@!4475.51D1.A110.13CE!0001!A2B0.0497!0008!C46C.0D3D.60B9.A4B7","iss":"https:\/\/gluu.alpha.my
datashare.com","jti":null,"acr_values":null,"scope":["openid"]}

Below is an example response from the introspection endpoint with extended_introspection scope:

{"active":true,"scopes":
["openid"],"client_id":"@!4475.51D1.A110.13CE!0001!A2B0.0497!0008!C46C.0D3D.60B9.A4B7","username":"Test
User","token_type":"bearer","exp":1591686388,"iat":1591599988,"sub":"@!4475.51D1.A110.13CE!0001!A2B0.0497!0000!2600.
9F11.7B4E.966B","aud":"@!4475.51D1.A110.13CE!0001!A2B0.0497!0008!C46C.0D3D.60B9.A4B7","iss":"https:\/\/gluu.alpha.my
datashare.com","jti":null,"acr_values":null,"scope":
["openid"],"given_name":"Test","family_name":"User","uid":"test.user@nixu.com"}

Below table describes the common parameters that are returned by the token introspection endpoint:

Parameter Mandatory Description Example Value

active Yes
Indicates whether
the access token is
active or not.

true

scope No

JSON array
containing scopes
associated to the
access token.

["openid"]

client_id Yes
Client for which the
access token was
issued.

@!4475.51D1.A110.13CE!0001!A2B0.0497!0008!C46C.0D3D.60B9.A4B7

username Yes Display name of the
authenticated user.

Test User

token_type Yes

Token type of the
access token. This is
always populated
with value bearer .

bearer

exp Yes
Expiration
timestamp of the
access token.

1591686388

iat Yes Access token
creation timestamp.

1591599988

sub Yes

Persistent unique
identifier of the
authenticated user.

If subject identifier
type for the client is
public , the value is
the same for all
clients. If the subject
identifier type is
pairwise , the
value will be client
specific.

@!4475.51D1.A110.13CE!0001!A2B0.0497!0000!2600.9F11.7B4E.966B

aud Yes
Client for which the
access token was
issued.

@!4475.51D1.A110.13CE!0001!A2B0.0497!0008!C46C.0D3D.60B9.A4B7

iss Yes Issuer of the access
token.

https:\/\/gluu.alpha.mydatashare.com

acr_values No

Authentication
method that was
used when
authenticating.

passport_social

Following additional claims are populated when using extended_instrospection scope:

Parameter Mandatory Description Example Value

given_name No User's first names. Test

family_name No User's last name. Tester

id_type No Identifier type, either sisuid or ssn if populated. sisuid

id_source No
Identity source. Possible values are sisuid and
signicat sisuid

uid Yes User's username. test.user@nixu.com

govID No User's government issued identifier. 010101-0101

c No Country of government issued identifier ISO 3166-
alpha-2 format.

FI

loa No Identity assurance level of the identity. Either 0 or 2 . 2

pairwise_identifiers No JSON Array containing pairwise identifiers of the user.
["pairwise1",
"pairwise2"]

When user has authenticated with SisuID and low-level authentication, the additional claims are populated in following way: *
given_name and family_name are not available * id_type is sisuid * id_source is sisuid * uid contains the unique SisuID
persistent identifier * govID and c are not available * loa is populated with 0 * pairwise_identifiers contains the pairwise
values for the user * username contains the mobile phone number of the user * acr_values is populated with passport_social

When user has authenticated with SisuID and strong authentication, the additional claims are populated in following way: * given_name
is populated with the first names of the user * family_name is populated with the last name of the user * id_type is sisuid *
id_source is sisuid * uid contains the unique SisuID persistent identifier * govID contains the government issued identifier * c
contains the country corresponding to government issued identifier in ISO 3166-alpha-2 format. * loa is populated with 2 *
pairwise_identifiers contains the pairwise values for the user * username contains the displayname (first names and last name)
of the user. * acr_values is populated with passport_social

When user has authenticated with Signicat strong authentication, the additional claims are populated in following way: * given_name is
populated with the first names of the user * family_name is populated with the last name of the user * id_type is ssn * id_source is
signicat * uid contains random unique user name created for the user * govID contains the government issued identifier * c
contains the country corresponding to government issued identifier in ISO 3166-alpha-2 format. * loa is populated with 2 *
pairwise_identifiers contains the pairwise values for the user * username contains the displayname (first names and last name)
of the user. * acr_values is populated with passport_social

Links
OpenID Connect Core 1.0: http://openid.net/specs/openid-connect-core-1_0.html

OpenID Connect Discovery 1.0: http://openid.net/specs/openid-connect-discovery-1_0.html

RFC 6749: The OAuth 2.0 Authorization Framework: https://tools.ietf.org/html/rfc6749

RFC 6750: The OAuth 2.0 Authorization Framework: Bearer Token Usage: https://tools.ietf.org/html/rfc6750

RFC 7519: JSON Web Token (JWT): https://tools.ietf.org/html/rfc7519

RFC 7515: JSON Web Signature (JWS): https://tools.ietf.org/html/rfc7515

RFC 7517: JSON Web Key (JWK): https://tools.ietf.org/html/rfc7517

RFC 7636: Proof Key for Code Exchange: https://tools.ietf.org/html/rfc7636

RFC 7662: OAuth 2.0 Token Introspection: https://tools.ietf.org/html/rfc7662

