
MyDataShare Developer Guide
This document describes the functionality currently available to ecosystem members.

This document is best approached with knowledge on MyData as a concept, MyDataShare as a solution and REST interfaces as well
as OpenID Connect as technologies.

This document is a gentle introduction to utilizing MyDataShare functionalities.

It is complemented by deeper dives into the actual application programming interface as well as integration to the MyDataShare
identity provider.

Disclaimer

MyDataShare is a work in progress.

Thus implementation details and processes are subject to change.

Do not hesitate to contact us in case you encounter bugs, inconsistencies or other hindrances.

Version

1.3 Updated 6.10.2021

Definitions and assumptions

This document utilizes the beta environment of MyDataShare.

This document utilizes Signicat as the identity provider.

This document utilizes curl as the command line tool to access the API. You can substitute any other tool that enables use of direct
REST interactions (postman, insomnia). Remember that you can use the full MyDataShare API reference to use the Swagger UI to
dig deeper into the endpoints.

The following definitions are used in the document for brevity, the URLs mentioned here are for the Beta environment, you will receive
other URLS if you are supposed to use other environments:

AUTH_URL = https://gluu.beta.eks.mydatashare.com

ORG_URL = https://api.beta.eks.mydatashare.com/organization/v2.0

PUB_URL = https://api.beta.eks.mydatashare.com/public/v2.0

WALLET_URL = https://wallet.beta.eks.mydatashare.com

O_TOKEN = <access token as received from Gluu>

Some included responses are abbreviated for brevity, as shown by ellipsis '...'.

The request-id field is an MyDataShare internal reference that is used to trace issues and assist in platform development.

MyDataShare API overview

The MyDataShare API is a RESTful interface.

Each entity is identified with an UUID, and this identifier is used in retrieving entities as well as describing relations between entities.

Each entity is returned as a whole in the response, and the response also contains the entities that are referred to in the returned.

https://mydata.org/
https://www.mydatashare.com/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://openid.net/connect/
https://app.swaggerhub.com/apis/MyDataShare2/MyDataShare

This process is applied recursively, so the response may contain multiple entities.

Data model in a nutshell

The following entities are the high-level object types used in MyDataShare:

Organization (ORG)

company (or equivalent) entity

able to create data providers and data consumers.

Data consumer (DC)

sometimes referred as data using service

an organization-owned entity

able to create processing records (= consent requests).

Data provider (DP)

sometimes referred as data providing service

an organization-owned entity

able to serve data as a source for data consumers.

Access Gateway (AGW)

an organization-owned entity

a component in front of the data source that communicates with MyDataShare and introspects the needed permissions

Data subject

a person

able to receive, view and respond to processing records.

Note: there is no single object type for a data subject. A data subject is uniquely identified with any of the identifiers (ssn,
phone number, etc) in a keychain.

Processing record (PR)

a permission request created by a data consumer to a data subject on specified data provider's contents.

this can be of different type responding to different bases of processing personal data defined by GDPR eg. consent,
legal_oblication and contract.

Note: a data provider can be omitted in some cases (e.g. permission to store contact details)

Other relevant components

Identity provider

The component which is responsible for the authorization of organization clients and authentication of users. There are different
authentication methods that can be used in different environments. These can be found from the public endpoint GET
$PUB_URL/auth_items

Preliminary steps
Obtain client credentials

The client credentials are created by a MyDataShare-team member, please provide the following information in your request:

Organization name in Finnish and English.

Whether both data consumer and a data provider are needed, or just one of them.

Token endpoint authentication method (client_secret_basic or client_secret_post)

In case you are creating a front end application that uses MyDataShare authentication, also add:

URLs where browser can be redirected after successful authentication

URLs where browser can be redirected after successful logout

Display name of the application

Contact email addresses and phone numbers

As a response you will receive one or many (depending on your use case) sets of

Client identifier (= ORG_CLIENTID below)

Client secret (= ORG_PASSWORD below)

Request creation of an Organization

The organizations are created by a MyDataShare-employee, please provide the following information in your request:

Organization name in Finnish and English.

Organization registration number (i.e. Y-Tunnus for finnish companies).

Organization country.

Client identifier(s) to be attached to the organization (as created in the preceding step)

As a response you will receive:

UUID of the newly created organization (= ORG_UUID below).

Use Signicat test users

As the beta environment should never contain real user identities, we utilize the handful of test users as provided by the identity
brokering finnish trust network members. Please refer to Signicat documentation and select your test subjects.

Note As there is only a limited number of the test users, you are likely to see unexpected processing records and other data in the
Wallets belonging to them - these records have been created by other users of the environment.

Familiarize yourself with MyDataShare API

The MyDataShare API reference (Swagger) provides full details on the programming interface. This works against the MyDataShare
Beta environment.

Obtain an access token

Perform the following request to the MyDataShare identity provider to obtain an access token with the client credentials flow
(client_secret_post):

(split into multiple lines for readability)

Extract the token from the response, and store it in O_TOKEN (organization-scopen token) variable for convenience.

Validate that you are able to access the API and your organization

Perform the following request to the MyDataShare interface to see the details of your organization:

(split into multiple lines for readability)

The response describes the organization itself and its identifiers as well as its client identifiers:

curl -X POST
 -d "grant_type=client_credentials&client_id=$ORG_CLIENTID&
 client_secret=$ORG_PASSWORD&scope=organization"
 $AUTH_URL/oxauth/restv1/token

1
2
3
4

curl -X GET
 -H "authorization: Bearer $O_TOKEN"
 -H "Content-Type:application/json"
 $ORG_URL/organization/$ORG_UUID

1
2
3
4

Bash

Bash

https://developer.signicat.com/id-methods/finnish-bank-eids-ftn/
https://app.swaggerhub.com/apis/MyDataShare2/MyDataShare

The identifiers correspond to real-world identifiers (such as the finnish y-code business registration number), and the client identifiers
are used to authorize access to the interface (as described in the preceding step).

Each list of entities identifies them by their unique identifiers (UUIDs), which are used to refer to them and to link them to each other.

Create a data provider

Perform the following request to the MyDataShare interface to create a data provider:

(split into multiple lines for readability)

{
 "organizations": {
 "726720a1-99d7-41f0-9b5f-4c0a085f50f6": {
 "default_language": "fin",
 "url_group_id": 11,
 "country": "FIN",
 "description": "The greatest of the great old ones...",
 "legal_entity_type": "oy",
 "translation_id": 25,
 "name": "Oy Cthulhu Ab",
 "suppressed_fields": [
 "data_consumers.uuid",
 "data_providers.uuid"
],
 "updated": "2020-06-24T10:34:09.982462+00:00",
 "organization_client_ids.uuid": [
 "31582023-5619-4dc2-a469-e1e9466fdd79"
],
 "uuid": "726720a1-99d7-41f0-9b5f-4c0a085f50f6",
 "deleted": false,
 "organization_ids.uuid": [
 "c5a0ae3f-25f7-4e1a-b693-34493c37beb0"
],
 "created": "2020-06-24T10:34:09.982457+00:00",
 "group_id": null
 }
 },
 "organization_ids": {
 "c5a0ae3f-25f7-4e1a-b693-34493c37beb0": {
 "org_id_value": "3385750-2",
 "uuid": "c5a0ae3f-25f7-4e1a-b693-34493c37beb0",
 "suppressed_fields": [
 "organizations.uuid"
],
 "deleted": false,
 "org_id_type": "registration_number",
 "created": "2020-06-24T10:33:05.209426+00:00",
 "updated": "2020-06-24T10:33:05.209431+00:00",
 "org_id_country": "FIN"
 }
 },
 "organization_client_ids": {
 "31582023-5619-4dc2-a469-e1e9466fdd79": {
 "name": "Client of Cthulhu",
 "client_id": "@!FF9F.35A9.9F4B.DF31!0001!6A12.9F11",
 "created": "2020-06-24T10:37:15.417749+00:00",
 "updated": "2020-06-24T10:37:15.417754+00:00",
 "uuid": "31582023-5619-4dc2-a469-e1e9466fdd79",
 "deleted": false,
 "organization_uuid": "726720a1-99d7-41f0-9b5f-4c0a085f50f6"
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

"organizations": {
 "726720a1-99d7-41f0-9b5f-4c0a085f50f6": {
 "default_language": "fin",
 "uuid": "726720a1-99d7-41f0-9b5f-4c0a085f50f6",
 ...

1
2
3
4
5

JavaScript

JavaScript

Parameter Mandatory Description Example value

organization_uuid Yes Identifier of the organization that owns the data provider
3fa85f64-5717-
4562-b3fc-
2c963f66afa6

access_gateway_uuid No
The uuid of a Access Gateway if there is one in front of
the data source. See Create an Access Gateway-section
for more details

e0bfa0ae-
27b9-42b1-
a90f-
bfaa2e4a27dd

name Yes Name of the data provider Delivery
address

description Yes Description of the data provider

The information
provided
includes the
following: street
address, city,
zip code, state
and country

has_live_preview Yes Whether data subject specific data shall be displayed in
the Wallet (not supported currently) false

static_preview Yes A preview that is displayed in every data subject's Wallet

Malone Avenue
32, Stockton,
85010, UT,
United States

default_language Yes The language in which the contents are presented by
default fin

input_pr_identifier No Should the introspection response include the identifier
that is used in the PR request (eg. pairwise, or SSN)? true

input_id_types.uuid No

The uuid's of those id_types that should be included in
the introspection response (eg. pairwise, email or SSN).
These are needed if the AGW needs a different identifier
attached to the data subject (for example to fetch the
data from data source) that is not the one that is
attached to the PR. The id_types can be fetched from
endpoint $ORG_URL/id_types

["a0aee0bf-
27b9-42b1-
a90f-
bfaa2e4a27dd",
"726720a1-
99d7-41f0-
9b5f-
4c0a085f50f6"]

The response describes the created data provider:

curl -X POST -H "authorization: Bearer $O_TOKEN" -H "Content-Type:application/json"
 -d '{
 "organization_uuid": $ORG_UUID,
 "default_language": "eng",
 "name": "Name of the data provide",
 "description": "Description of the data provider",
 "has_live_preview": false,
 "static_preview": "This data contains the data x, y and z"
 }' $ORG_URL/data_provider

1
2
3
4
5
6
7
8
9

Bash

Take note of the uuid identifier of the data provider (= DP_UUID). In this example: a0aee0bf-27b9-42b1-a90f-bfaa2e4a27dd .

Create a data consumer

As the data consumer contains the purpose, description and legal details that are copied to the processing record, data consumer can
be thought of as a permission template from which the PR derives its content from. Processing record is what the data subject will
see in the MyDataShare Wallet or service UI.

Perform the following request to the MyDataShare interface to create a data consumer:

(split into multiple lines for readability)

 "data_providers": {
 "a0aee0bf-27b9-42b1-a90f-bfaa2e4a27dd": {
 "url_group_id": 1474,
 "translation_id": 228,
 "suppressed_fields": [
 "identifiers.uuid",
 "processing_records.uuid"
],
 "default_language": "fin",
 "has_live_preview": false,
 "name": "Nimi",
 "static_preview": "Esikatselu",
 "created": "2020-06-18T09:08:50.462913+00:00",
 "updated": "2020-06-18T09:08:50.462918+00:00",
 "major_version": 1,
 "organization_uuid": "726720a1-99d7-41f0-9b5f-4c0a085f50f6",
 "minor_version": 0,
 "uuid": "a0aee0bf-27b9-42b1-a90f-bfaa2e4a27dd",
 "description": "Kuvaus",
 "deleted": false
 }
 ...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

curl -X POST -H "authorization: Bearer $O_TOKEN" -H "Content-Type:application/json"
 -d '{
 "organization_uuid": $ORG_UUID,
 "default_language":"eng",
 "name":"Nimi",
 "purpose":"Your data x will be used to provide you service y",
 "description":"The organization z is requesting your permission to do abc...",
 "legal":"The more detailed legal implications and data usage descriptions are...",
 "pre_cancellation":"If you revoke this consent, your data x is deleted.",
 "post_cancellation":"As you revoked the consent, your data x is going to be deleted."
 }' $ORG_URL/data_consumer

1
2
3
4
5
6
7
8
9
10
11

JavaScript

Bash

Parameter Mandatory Description Example value

organization_uuid Yes
Identifier of the
organization that owns the
data consumer

3fa85f64-5717-4562-b3fc-2c963f66afa6

name Yes Name of the data
consumer Delivery details

description Yes Description of the data
consumer

In order to be able to ensure a smooth delivery,
the recipient is requested to provide all pertinent
details. These details include ...

purpose Yes
Purpose of the processing
records derived from this
data consumer

 To use the delivery address to deliver the
products to the correct address

legal Yes

Legal flavoured purpose
of the the processing
records derived from this
data consumer. This is
shown in the UI if the user
clicks this open, thus this
can be longer text.

The delivery details provided will be forwarded to
all agents involved in the delivery process. The
list of commonly utilized agents is available at ...
(this usually includes needed legal details eg. a
more detailed description of the data and links to
relevant policies and terms pages or documents.

pre_cancellation
 Yes (can
be empty)

Text displayed to the data
subject at permission
declination/revocation

If you revoke access to your delivery details, the
delivery of the goods may be significantly
delayed.

post_cancellation
 Yes (can
be empty)

Text displayed to data
subject after permission
declination/revocation

You have now revoked access to your delivery
details. Any delays experienced during the
delivery process have been explicitly disclaimed
by us.

default_language Yes
The language in which the
contents are presented by
default

fin

The response describes the created data consumer:

Take note of the uuid identifier of the data provider (= DC_UUID). 95322354-b116-47e3-b210-d3d672f8139f in this example.

Create a processing record

Perform the following request to the MyDataShare interface to create a processing record that defines a consent request for a data
subject to access content at a data provider:

{
 "data_consumers": {
 "95322354-b116-47e3-b210-d3d672f8139f": {
 "url_group_id": 1472,
 "translation_id": 226,
 "legal": "Laki.",
 "post_cancellation": "Post",
 "default_language": "fin",
 "name": "Nimi",
 "suppressed_fields": [
 "processing_records.uuid"
],
 "created": "2020-06-18T09:03:56.760426+00:00",
 "updated": "2020-06-18T09:03:56.760431+00:00",
 "major_version": 1,
 "purpose": "Tarkoitus",
 "organization_uuid": "726720a1-99d7-41f0-9b5f-4c0a085f50f6",
 "minor_version": 0,
 "uuid": "95322354-b116-47e3-b210-d3d672f8139f",
 "pre_cancellation": "Pre",
 "description": "Kuvaus",
 "deleted": false
 }
 ...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

JavaScript

(split into multiple lines for readability)

Parameter Mandatory Description Example value

data_provider_uuid Yes Identifier of the data consumer 3fa85f64-5717-4562-b3fc-
2c963f66afa6

data_consumer_uuid Yes Identifier of the data provider 3fa85f64-5717-4562-b3fc-
2c963f66afa6

record_type Yes Legal basis for permission request consent

identifier.type Yes Type of the data subject's identifier ssn

identifier.country Yes Country of the data subject's
identifier fin

identifier.id Yes Value of the data subject's identifier 220188-145U

The response describes the created processsing record (and all related entities):

Take note of the identifier of the processing record (= PR_UUID).

The most interesting returned entity, in addition to the processing record itself, is the identifier and its relatives that describes the data
subject, the person to whom this processing record is addressed to:

curl -X POST -H "authorization: Bearer $O_TOKEN"
 -H "Content-Type:application/json"
 -d '{
 "data_consumer_uuid":"$DC_UUID",
 "data_provider_uuid":"$DP_UUID",
 "identifier": {
 "country":"FIN",
 "type":"ssn",
 "id":"TESTUSER-SSN"
 },
 "record_type":"consent"
 }'
 $ORG_URL/processing_record

1
2
3
4
5
6
7
8
9
10
11
12
13

 "processing_records": {
 "7b5b7c9d-a9fb-41c2-9fd7-673f3a23b61b": {
 "data_provider_uuid": "a0aee0bf-27b9-42b1-a90f-bfaa2e4a27dd",
 "record_type": "consent",
 "legal": null,
 "status": "pending",
 "name": null,
 "supersedes_uuid": null,
 "expires": null,
 "accepted_language": null,
 "identifier_uuid": "7bf3dc27-d69b-4225-a100-0da9710cbc48",
 "not_valid_before": null,
 "url_group_id": 1475,
 "description": null,
 "created": "2020-06-18T09:10:20.268744+00:00",
 "updated": "2020-06-18T09:10:20.268749+00:00",
 "purpose": null,
 "data_consumer_uuid": "95322354-b116-47e3-b210-d3d672f8139f",
 "uuid": "7b5b7c9d-a9fb-41c2-9fd7-673f3a23b61b",
 "group_id": null,
 "deleted": false
 }
 },

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

 "identifiers": {
 "7bf3dc27-d69b-4225-a100-0da9710cbc48": {
 "url_group_id": 311,
 "verified": null,
 "suppressed_fields": [
 "data_providers.uuid",
 "processing_records.uuid"
],
 "id_type_uuid": "49679532-9c4c-4a46-9e5b-a914472f9612",

1
2
3
4
5
6
7
8
9

Bash

JavaScript

JavaScript

The MyDataShare Wallet

 "created": "2020-06-12T10:39:11.567107+00:00",
 "updated": "2020-06-12T10:39:11.567108+00:00",
 "id": "010200A9618",
 "id_provider_infos.uuid": [
 "9cf5cfe3-9412-4a31-b4f8-dabb191d260e",
 "d199be2f-d8f4-4a9f-a778-c7f69fe75d87"
],
 "uuid": "7bf3dc27-d69b-4225-a100-0da9710cbc48",
 "group_id": null,
 "deleted": false
 }
 },
 ...
 "id_providers": {
 "4e161a9e-f1f3-4e89-b30a-6854730bcda4": {
 "url_group_id": 1463,
 "translation_id": 222,
 "type": "gluu",
 "suppressed_fields": [
 "identifiers.uuid"
],
 "name": "Gluu",
 "created": "2020-06-12T11:07:07.850535+00:00",
 "updated": "2020-06-12T11:07:07.850540+00:00",
 "id": "https://gluu.beta.eks.mydatashare.com",
 "uuid": "4e161a9e-f1f3-4e89-b30a-6854730bcda4",
 "description": "Gluu (beta)",
 "deleted": false
 }
 },
 ...
 "id_provider_infos": {
 "9cf5cfe3-9412-4a31-b4f8-dabb191d260e": {
 "first_name": "Onni Juhani",
 "language": null,
 "last_name": "Korhonen",
 "created": "2020-06-18T08:56:21.056922+00:00",
 "updated": "2020-06-18T08:56:21.056929+00:00",
 "last_login": "2020-06-18T08:56:20.959805+00:00",
 "attributes": null,
 "source": "signicat",
 "uuid": "9cf5cfe3-9412-4a31-b4f8-dabb191d260e",
 "identifier_uuid": "7bf3dc27-d69b-4225-a100-0da9710cbc48",
 "id_provider_uuid": "4e161a9e-f1f3-4e89-b30a-6854730bcda4",
 "deleted": false
 },
 },
 ...
 "id_types": {
 "49679532-9c4c-4a46-9e5b-a914472f9612": {
 "url_group_id": 1,
 "translation_id": 1,
 "type": "ssn",
 "suppressed_fields": [
 "identifiers.uuid"
],
 "name": "Finnish personal identity number",
 "created": "2020-06-12T10:37:07.518073+00:00",
 "updated": "2020-06-12T10:37:07.518073+00:00",
 "country": "FIN",
 "uuid": "49679532-9c4c-4a46-9e5b-a914472f9612",
 "verify_interval": -1,
 "description": "Identifier for tracking individuals",
 "deleted": false
 }
 }

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

MyDataShare Wallet is the interface a data subject can use to browse and react to the permission requests. The data subject can
decline or grant consent type permission requests and see the status of permission requests that eg. of type legal_obligation
and contract .

In MyDataShare beta environment the wallet can be found from the URL https://wallet.beta.eks.mydatashare.com/front In this
document this is refereced in examples with the variable WALLET_URL

This screenshot has different text values indicated in purple to show how they are shown to the user and to know where their content
comes from.

https://wallet.beta.eks.mydatashare.com/front

Create an access gateway (AGW)

Access gateway is a component in front of the data source that communicates with MyDataShare and introspects the needed
permissions. MyDataShare has a reference implementation of a Python code that can be used to implement this functionality. It can
be found here Access Gateway GitHub repo. More information about it in its own README.

Access Gateway (hereafter, for brevity: AGW) is a general purpose extendable API gateway developed originally for MyDataShare
MyData operator platform to shield and protect the data providing services but is not limited to be used within the MyDataShare
ecosystem. Vastuu Group wants through open sourcing the code as a baseline/reference implementation of the MIM4 Connector
function to invite vendors and developers to build and extend on it and simultanously to create multi-vendor interoperability
between MyData operators with heterogenous product realizations. However, most of this document focuses on using
MyDataShare Access Gateway as part of MyDataShare ('MDS') ecosystem. The MIM4 Connector specific configuration and use of
AGW will be documented in detail as the MIM4 project evolves forward. The latest on MIM4 Connectivity Specification and the
Connector can be found here.

The main feature of AGW is to help customers easily protect their data provider (MyData term: data source) services. AGW acts as
a shield atop the data provider service and introspects inbound requests from data consumers (MyData term: data using service)
for validity.

Perform the following request to the MyDataShare interface to create an access gateway:

(split into multiple lines for readability)

Parameter Mandatory Description Example value

organization_uuid Yes
Identifier of the
organization that owns
the access gateway

3fa85f64-5717-4562-b3fc-2c963f66afa6

name Yes Name of the access
gateway Access gateway in front of data source X

description Yes Description of the access
gateway

The access gateway in front of the data source X
validating that the access to this data should be
permitted

The response describes the created access gateway:

Take note of the identifier of the access gateway (= AGW_UUID). In this example: e0bfa0ae-27b9-42b1-a90f-bfaa2e4a27dd .

Add the access gateway URL

(split in to multiple lines for readability)

curl -X POST -H "authorization: Bearer $O_TOKEN" -H "Content-Type:application/json"
 -d '{
 "organization_uuid": "1fade972-f8d8-49aa-b3b8-111111111111",
 "name": "Access gateway in front of data source X",
 "description": "The access gateway in front of the data source X ..."
 }' $ORG_URL/access_gateway

1
2
3
4
5
6

 "access_gateways": {
 "e0bfa0ae-27b9-42b1-a90f-bfaa2e4a27dd": {
 "suppressed_fields": [
 "client_ids.uuid",
 "data_providers.uuid"
],
 "url_group_id": 6975,
 "uuid": "e0bfa0ae-27b9-42b1-a90f-bfaa2e4a27dd",
 "organization_uuid": "e9721fad-f8d8-49aa-b3b8-9810b39e8ba3",
 "description": "The access gateway in front of the data source X validating...",
 "updated": "2021-10-01T12:33:37.025606+00:00",
 "name": "Access gateway in front of data source X",
 "created": "2021-10-01T12:33:37.025603+00:00",
 "deleted": false
 }
 ...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Bash

JavaScript

https://github.com/MyDataShare/access-gateway
https://www.mydatashare.com/
https://www.mydatashare.com/oasc-mim4-specification

Response

Save the uuid indentifier (= URL_UUID).

Add the URL to the Access Gateway

The Access Gateway URL needs to be attached to the Access Gateway so that the JWT validation of the request ticket will pass. The
Access Gateway URL acts as the audience for the JWT.

Add the URL to the Data provider

Data retrieval through the Access Gateway

Please see the public The Access Gateway repo for up-to-date instructions on how the data can be retrived through the Access
Gateway.

View the processing record in the MyDataShare Wallet

Log in to the MyDataShare Wallet at: https://wallet.beta.eks.mydatashare.com/ (use the same test user to whom you targeted with the
processing record in the preceding step).

You can interact with the processing record in the Wallet (grant the request, decline the request, re-grant the request).

curl -X POST -H "authorization: Bearer $O_TOKEN" -H "Content-Type:application/json"
 -d '{
 "url": "https://api.mydatashare.com/introspect",
 "url_type": "access_gateway",
 "method_type": "post",
 "name": "AGW url for data source x",
 "description": "AGW url for data source x in environment y for the purpose of z..",
 }'
 $ORG_URL/url

1
2
3
4
5
6
7
8
9

{
 "uuid": "3fa85f64-5717-4562-b3fc-2c963f66afa6",
 "created": "2021-10-05T19:07:21.321Z",
 "updated": "2021-10-05T19:07:21.321Z",
 "deleted": false,
 "suppressed_fields": [
 [
 "data_providers.uuid",
 "processing_records.uuid"
]
],
 "url_uuid": "3fa85f64-5717-4562-b3fc-2c963f66afa6",
 "url_group_id": 0,
 "subgroup_id": 0
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

curl -X POST -H "authorization: Bearer $O_TOKEN" -H "Content-Type:application/json"
 -d '{
 "url_uuid": "$URL_UUID",
 "model": "access_gateway",
 "model_uuid": "$AGW_UUID"
}'
 $ORG_URL/url_group_url

1
2
3
4
5
6
7

curl -X POST -H "authorization: Bearer $O_TOKEN" -H "Content-Type:application/json"
 -d '{
 "url_uuid": "$URL_UUID",
 "model": "data_provider",
 "model_uuid": "$DP_UUID"
}'
 $ORG_URL/url_group_url

1
2
3
4
5
6
7

Bash

JavaScript

Bash

Bash

https://github.com/MyDataShare/access-gateway
https://wallet.beta.eks.mydatashare.com/

Obtain status of the processing record

Perform the following request to the MyDataShare interface to retrieve the processing record:

(split in to multiple lines for readability)

The status -field describes the current status of the processing record.

Add translation to a data provider or a data consumer

MyDataShare supports localized text fields for many object types.

Using an access token with organization-domain scope, it is possible to add translations to data providers and data consumers.

(split into multiple lines for readability)

You must add all the translations of non-optional translatable fields with a single request. Failure to submit all of them is signposted as
follows:

Create an application that uses MyDataShare

The interfaces as described in the preceding chapter are usable programmatically as well. The requests and responses are plain
REST. Generating and interpreting them is significantly easier using a convenience library (obviously dependent on the prorgramming
language used).

If you implement your solution as a web application, it is strongly suggested to split the application into two parts, and confine the use
of any client secret in the backend component only.

However, client applications (native mobile applications or Javascript based single-page applications) that cannot keep the client
secret secure can use the Authorization Code Grant Flow with PKCE extension.

Please refer to the accompanying MyDataShare OpenID Connect Integration Specification for details about the authentication flows
of the application and integration in general.

curl -X GET
 -H "authorization: Bearer $TOKEN"
 -H "Content-Type:application/json"
 $ORG_URL/processing_record/$PR_UUID

1
2
3
4

...
"status":"active"
...

1
2
3

curl -X POST
 -H "authorization: Bearer $O_TOKEN"
 -H "Content-Type:application/json"
 -d '{
 "object_type": "data_provider",
 "object_uuid": "$DP_UUID",
 "translations": [
 {
 "language": "swe",
 "field_name": "name",
 "translation": "översuttit namn"
 },
 {
 "language": "swe",
 "field_name": "description",
 "translation": "översuttit berskrivining"
 }
]
 }'
 $ORG_URL/translation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

{
 "error": "bad_request",
 "description": "Missing required translation fields (['description'])",
 "request_id": "REQ-ID"
}

1
2
3
4
5

Bash

JavaScript

Bash

JavaScript

https://tools.ietf.org/html/rfc7636

Allow the user to interact with the MyDataShare Wallet

You can forward the user's browser to a single processing record (and return back to your application) using the following URL:

(split in to multiple lines for readability)

Where authitemuuid is an optional reference to a selected authentication method, if this is known. This will direct the user to this
authentication flow, if the session does not already exist. The different authentication items and their uuids can be fetched from this
URL: $PUB_URL/auth_items .

Optionally you can add the string lng=en (before the #pr part) to force the language to English. Supported languages are fi
(Finnish), en (English) and sv (Swedish).

API reference

The MyDataShare API reference provides full details on the programming interface.

$WALLET_URL/wallet/requests?
 processing_record=xxx&
 return_url=https://go.back.here.com&
 auth_item_uuid=yyy#pr

1
2
3
4

Bash

https://app.swaggerhub.com/apis/MyDataShare2/MyDataShare

